Your Server Will Be With You Shortly: Samba and Chrome OS

5AMBA

Jeremy Allison
Samba Team/Google Open Source
Programs Office

jra@samba.org jra@google.com

What is Chrome OS?

- Chrome OS is a managed, single-user desktop environment created by Google.
- All the hard parts of integrating a Linux desktop are not done on the Chrome OS box itself.
 - All set-up is remotely managed.
 - Normally devices are joined to AD before being given to users.
- Single user means no winbind needed no real users.
 - No real user data held locally, everything accessed via cloud.
 - Remote SMB share access available, but use case is the device can be re-imaged at any time.

Chrome OS and Samba

- Chrome OS uses Samba for two important features.
- 1). Active Directory integration.
 - This is complex.
 - Samba has a long history of (mostly) doing this right.
 - Kerberos only. No NTLM fallbacks allowed here.
- 2). Remote SMB fileshare access for local networks.
 - Samba has a long history of doing this right.

The Chrome OS / Active Directory Logon Process

- net ads workgroup
 - Get the workgroup info for the realm.
- net ads info
 - Get the KDC ip address and time.
- net ads lookup
 - CLDAP request to get the KDC name.
- kinit
- Get the TGT.

The Chrome OS / Active Directory Logon Process (continued)

- net ads search "(sAMAccountName=user)"
 - Get the user affiliation.
- net ads gpo list
 - Get group policy
 - Parse output to feed into..
- smbclient
 - Download group policy files and apply locally.

Sandboxing can make preserving caches difficult.

Chrome OS quirks

- For security purposes, Chrome OS uses a "allow list" of system calls that can be configured per-binary (seccomp).
- "System" services like Samba are invoked via interprocess communication – DBUS requests.
- Run under "minijail" as a separate user-id.
 - minijail restricts file system access.
 - Custom config files have to be created and passed to invoked binaries.
 - Means many Samba "normal OS" assumptions (can store name → IP address mapping in caches etc.) no longer hold true.

The Start of the problem

- A large customer complained that on one remote site, no Active Directory users could log in.
 - All other sites worked fine.
- On entering login credentials, the box spun its wheels for 4 minutes and then went back to the logon screen.
- What is different about this site?
 - No local DNS server.
- Probably DNS lookup issues.
 - What information can we get from the customer box ?

This should be easy

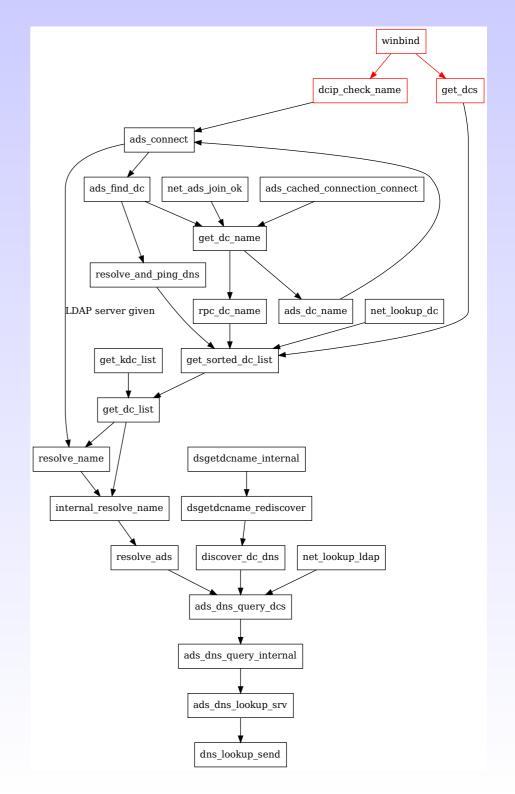
- Incredibly helpful and knowledgeable customer IT staff.
 - Able to get wireshark traces between Chrome OS and servers.
 - No interactive debugging allowed, but...
- Chrome OS can return Samba tool debug level 10 logs.
 - Available via a simple terminal command.
 - Creates a zip file containing all system logs.

This should be easy (continued)

- If it's a DNS latency issue, should be easily solvable via caching in Open Source dnsmasq caching DNS resolver code.
- For an earlier reported problem, I added SRV record (widely used to find AD-DC's) caching to dnsmasq for v2.81.
 - Oh. Turns out dnsmasq wasn't added to Chrome OS due to concerns about using it as a system-wide solution.

The nightmare unfolds

- Initial logs show DNS SRV record lookup for name "_kerberos._tcp.<CUSTOMER.NAME>" returns over 200+ names.
 - Returned names do not have associated IP addresses returned in the DNS SRV record reply.
 - This means we have to now do DNS name → IP address queries.
- We do this sequentially using getaddrinfo().
 - For A (IPv4) records.
 - And AAAA (IPv6 records).
- We don't do anything until all names are resolved :-(.
 - But but but.. we only need **ONE** working server.


Simple problem statement

- Make DNS name lookup in Samba fast, resilient and scalable to hundreds of DNS servers and thousands of simultaneous names for both IPv4 and IPv6 look-ups.
- This SHOULD be a job for the underlying operating system.
 - POSIX sucks, yet again :-(.
 - getaddrinfo() is not quite fit for purpose.
 - Neither is getaddrinfo_a() (wraps getaddrinfo() in a threadpool inside glibc).
- What should a DNS name lookup API look like ?
 - See the end of this talk for my ideas :-).

When you're in a hole.. start digging into the code!

- Sernet Samba Team member Volker Lendeke already anticipated this problem – built on top of earlier work by Kai Blin.
 - Our DNS record lookup code (dns_lookup_send / recv) is modern, asynchronous, and can contact multiple DNS servers in parallel.
 - It's also not being used in the 'net ads' code in the version in Chrome OS :-(.
- Maybe I can plumb this modern code into the Samba code paths used by Chrome OS?

Old, Overdesigned code (thanks to Sernet Samba Team member Ralph Böhme for the image)

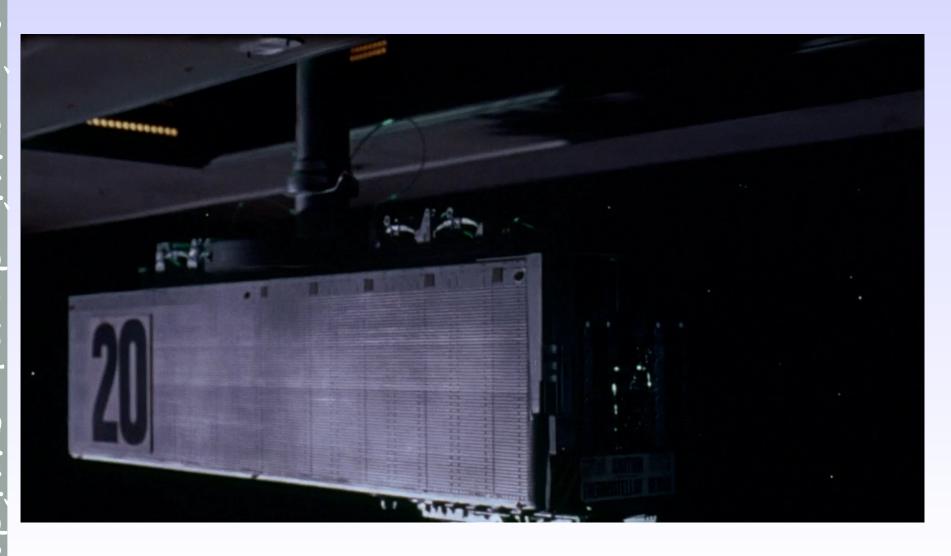
Frantic coding (3 weeks)

- Now is the chance to fix some really <u>old</u> code dealing with name look-ups.
 - First, fix the caching code to move everything to talloc(). Hide this under the guise of the bugfix :-).
- Re-use the existing async DNS lookup code and plumb into name resolution code inside namequery.c
 - This was much easier than expected, the async DNS code APIs inside Samba are really nice.
- Default 10-second timeout added.
 - Collect all the AD-DC addresses you can within that time.
 - Remember we only need one working one.

Overreach

- New function dns_lookup_list_async() can be used to map any array of names to IPv4 or IPv6 addresses.
 - Queries all known DNS servers with all requested names simultaneously.
 - Configurable timeout means we can limit how long we'll wait for answers.
- This could replace ALL name resolution in Samba.
 - Or not :-(. I came close, but could never get a full 'make test' to pass.
 - Culprit was resolv_wrapper that "mocks" DNS lookups by interposing at the glibc layer.
 - Hacking our python DNS server nearly made it work.

Why doesn't it work?


- Lots of local testing. Test framework added. Delivered to customer.
- Customer cannot login :-(.
- What did we miss?
 - Logs saved us (again).
 - New code uses readv() system call when falling back from UDP → TCP DNS look-ups (large replies).
 - Minijail had read() in the allow list, but not readv().
 - Well that should be an easy fix.
- Customer still cannot login :-(.

Now why doesn't it work?

- Chrome OS issues this time
 - Not everything is Samba's fault, thank goodness.
- User on problematic site is attempting to login to trusted domain.
 - Configuration code setting up Samba database files for a joined domain member needs a Domain SID for the named domain.
 - Chrome OS framing code wasn't setting this up for the trusted domain.
 - Note this domain SID isn't used at all in Chrome OS, but the Samba code expected it to be there
- Customer still cannot login :-(:-(.

Drop, drop, DROP!

https://www.youtube.com/watch?v=WsrVw9Jwtio

Work, damn you, work, Work, WORK!

- All Samba code seems to be working.
- kinit command is taking forever.
 - Wireshark traces are the key.
- MIT krb5 library code is ALSO doing SRV lookups...
 - For _kerberos._udp.<CUSTOMER.REALM>
 - Then _kerberos._tcp.<CUSTOMER_REALM>
- And then looking up every name returned via getaddrinfo for IPv4 (A) then IPv6 (AAAA).
- It's doing this three times :-(.

Red Hat to the rescue

- In 2007 Red Hat Samba Team member Guenther Deschner wrote an MIT krb5 "KDC Locator plugin" for Samba.
 - Purpose was to ask winbind for the closest KDC.
 - Now winbind uses async DNS to locate KDC's this would fix the problem.
- But Chrome OS doesn't have winbind.
 - I hacked Guenther's code to create an async DNS KDC locator that directly calls internal Samba function get_kdc_list().
- Customer can logon :-). Only 2 months later :-).

Lessons learned the hard way

- 1). Logging, logging, logging.
 - Without comprehensive logs this bug could not have been fixed.
- 2). Source code needed.
 - If MIT krb5 had been a proprietary library, this bug could not have been fixed.
- 3). Good customer network debugging.
 - Without full wireshark traces, this bug could not have been fixed.
- 4). Hire Open Source engineers :-).
 - Without a Samba Team member at Google, this bug could not have been fixed.

Getting out of the DNS client business

- POSIX DNS interfaces suck.
- What should they look like?
 - Systemd is the key resolvectl.c may already have what we need.
- Asynchronous inter-process communication (IPC) to a system daemon that can hide all the ugly hard code.
 - DNS over TLS, DNSSEC etc.
- File-descriptor based allows epoll/poll/kqueue to notify the caller to pick up results.
 - Re-use getaddrinfo structures for easy adoption.

Questions and Comments?

Email: jra@samba.org jra@google.com

Slides available at: