
O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

Symbolic Links Considered Harmful

Jeremy Allison
Samba Team/Google Open Source

Programs Office

jra@samba.org
jra@google.com

mailto:jra@samba.org
mailto:jra@google.com

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

What are symbolic links ?
● Strange to have to explain this in a file system

conference, but..
● Most computer users these days have no contact with

a file system.
– iPhone and Android users have no concept of a file system on their

device. Each application only handles its own kind of data storage.

● Possibly to enforce data “silos” to keep users tied to
an application.

– Students no longer know where a file is stored:
https://www.theverge.com/22684730/students-file-folder-directory-st
ructure-education-gen-z

– Users only search for “objects” by name.

● I have to help my family move “objects” around from
phone to file server.

https://www.theverge.com/22684730/students-file-folder-directory-structure-education-gen-z
https://www.theverge.com/22684730/students-file-folder-directory-structure-education-gen-z

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

Step back – What is a file system ?

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

A file system visualized.

Path = /home/jeremy/Music/Yo Yo Ma.mp3
/

usr home

bin sbin

useradd

jeremy

vartmp

 = directory = file

ls Documents Music

Yo Yo Ma.mp3

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

The original UNIX file system
C API dealing with paths

● open(“/home/jeremy/Music/Yo Yo Ma.mp3”, int flags, mode_t mode)

● unlink(“/path/to/file”)

● mkdir(“/new/directory/name”)

● rmdir(“/directory/name”)

● stat(“Yo Yo Ma.mp3”, struct stat *st) ($cwd is “/home/jeremy/Music”)

● chmod(“/path/to/file”, int mode)

● chown(“/path/to/file”, uid_t owner, gid_t group)

● chdir(“/path/to/new/working/directory”)

● etc..

● Note the “path” may be specified from the root (starts with ‘/’) or relative to
the current working directory (doesn’t start with ‘/’).

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

Hard links:
ln /usr/bin/ls /tmp/lls

link(“/usr/bin/ls”, “/tmp/lls”)
Path1 = /usr/bin/ls

Path2 = /tmp/lls /

usr home

bin sbin

useradd

jeremy

vartmp

 = directory = file

ls Documents Music

Yo Yo Ma.mp3

lls

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

Hard link details

● Hard links create a new directory entry (name) which
points to the same file data and metadata.

● Hard links cannot be made to directories.
● Hard links simply create a new absolute path to the

same file.
● Useful to allow a single file to be referenced by many

names.
– Underlying data is only removed once last link has gone.

● First use of hard links seems to be in the Incompatible
Timesharing System (ITS) in 1969.

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

Symbolic links:
ln -s /usr/sbin /home/foo

symlink(“/home/foo”, “/usr/sbin”)
Path1 = /usr/sbin

Path2 = /home/foo
/

usr home

bin sbin

useradd

jeremy

vartmp

 = directory = file

ls Documents Music

Yo Yo Ma.mp3

foo

bar

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

Symbolic link details
● Symbolic links allow the creation of a new object in the

file system that causes any process accessing it to
follow it to an arbitrary target somewhere else on the
file system.

– Not only files, but directories too.

– Loops can be created.

● This should have been a warning sign to file system
designers that they were doing something wrong.

● First reference to them is from MULTICS in 1965.
– But added to 4.2 BSD Unix.
– “..symbolic links have been added to release 4.2 of Berkeley Unix. This feature

frees the user from the constraints of the strict hierarchy that a tree structure
imposes. This flexibility is essential for good name space management.”

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

Symbolic links for application
developers

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

Why are symlinks so bad ?

● Symlinks allow paths to change on the fly, creating a
whole class of time-of-check, time-of-use (TOCTOU)
race condition security problems.

● Symlinks are not restricted to privileged users, but can
be created by anyone with write access anywhere in a
path.

● Symlinks break the beautiful “tree” abstraction of a
POSIX file system.

● Symlinks break the beautiful simplicity of the POSIX
file system API.

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

The evolution of the API to deal with
symlinks

● First change was introduction of lstat
– lstat(const char *path, struct stat *st)

– Original “stat()” API silently and transparently follows symlinks.

– Allows calling application to detect if the terminal component of a
path is a symlink.

– Does not detect symlinks other than the terminal component.

● Ended up in unsafe code such as:
lstat(dangerous_path, &sbuf);

if (!S_ISLNK(sbuf.st_mode)) {

 do_dangerous_operation_on(dangerous_path);

}

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

Go Speed Racer Go !

● Race condition exists between:● Race condition exists between:

● If an attacker can rename dangerous_path, and
replace it with a symlink to somewhere else before
do_dangerous_operation_on(dangerous_path) is
called, the dangerous operation is applied to the
attackers chosen path.

lstat(dangerous_path, &sbuf);
-------race starts here----
if (!S_ISLNK(sbuf.st_mode)) {
 ------race ends here----
 do_dangerous_operation_on(dangerous_path);
}

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

Surely these races are too narrow for
me to care about ?

● https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=symb
olic+link

– There are 1361 CVE Records that match your search.

● This does not just include “old” applications that were
written before symlink mitigation API’s were added to
POSIX.

– This includes symlink race condition security holes in the Rust
language standard library (from 2022).

● The API’s added to mitigate symlink errors are
impossible for application developers to use safely.

– Similar to the care needed for “atomic” files data and meta-data
updates, the POSIX API changes are too complex for safe use.

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=symbolic+link
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=symbolic+link

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

POSIX Symlink API mitigations
● First was an additional flag, O_NOFOLLOW to the

open() system call.
– Looks perfect, in practice doesn’t do what applications need.

– O_NOFOLLOW prevents the terminal component in a pathname
passed to open() being a symlink.

– If completely ignores symlinks in non-terminal components.

● Example of an exploit:
– (Application running as root – checks /data/mydir is safe)

Attacker renames “/data/mydir” → “/data/out-of-the-way”

symlink(“/data/mydir”, “/etc”);

int fd = open(“/data/mydir/passwd”, O_WRONLY|O_NOFOLLOW..);

ret = write(fd, data, size);

– Application now writes into /etc/passwd

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

More POSIX API mitigations
● To solve the previous O_NOFOLLOW problem

applications have to chdir() into the parent directory.
Check it hasn’t been symlink raced and then use
O_NOFOLLOW, then chdir back.

– Samba does this.

● open() → openat(int dirfd, const char *path, int flags,
mode_t mode)

– This actually works. The ‘dirfd’ parameter here is a handle of a
containing (parent) directory.

– So long as “path” has no “/” characters and flags contains
O_NOFOLLOW, then this cannot be raced.

● Of course, getting the handle on the parent directory
also has to be protected against symlink races.

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

XXXXat’s for everyone !
● Based on openat(), ALL path-based operations must

have an XXXXat() variant to avoid symlink races in the
same way.

● Oh look, lots of new system calls.

● The original clean and simple POSIX filesystem API
doesn’t look so clean and simple anymore.

– And on Linux, one of these calls doesn’t work – fchmodat() will still
always follow symlinks in the target path.

openat(), mkdirat(), unlinkat(), linkat(), renameat(),
symlinkat(), fstatat(), fchmodat(), fchownat(), futimesat(),
mknodat(), faccessat(), readlinkat(), utimensat(), scandirat(),
execveat()

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

Pathnames are now broken.
● Any application that allows more than one component

in a path without splitting the last component off and
using the XXXXat() functions can be symlink raced.

● Still not enough for a feature complete application.
– Extended attribute calls are missing, no getxattrat(), setxattrat() etc.

– For extended attribute pathname operations the
chdir()/realpath()/getxattr()/chdir() dance must still be done.

● I know, let’s add more open() flags !
– Linux added O_PATH.

– Allows a handle to be taken on a file or directory, usually meant to
be passed as the file descriptor argument to the XXXXat() functions.

– O_PATH handles cannot be used to read/write data.

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

Extended attributes revisited
● Having an O_PATH handle would be a great solution

for getting/setting extended attributes where you don’t
want to open the file for modification.

– Unfortunately O_PATH prohibits reading or writing extended
attributes.

● “Hack” solution, invented by a Red Hat engineer.
– int fd = openat(dirfd, “file”, O_PATH|O_NOFOLLOW);

sprintf(buf, “/proc/self/fd/%d”, fd);

getxattr(buf, ea_name, value, size);

● Depends on Linux-only semantics of /proc file system.
– Insanity, pure insanity.

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

Symlinks turn this:
Into this
(“Primer” timeline credit xkcd):

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

I assert that pathnames are now
unusable for “mortal” application

developers on POSIX
● I claim that for a non-trivial application, it is impossible

for application developers to avoid symlink races.
● It’s not just their own code – all library code they call

that uses path names must be aware of multi-path-
component symlink races.

● Spoiler alert – even security library code is not symlink
race aware.

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

Example #1

● Given a directory hierarchy:

● $ strace setfacl -R -m u:gdm:r foo

foo/
bar/

baz/
bibble

setxattr("foo", "system.posix_acl_access", "...", 44, 0) = 0
getxattr("foo/bar", "system.posix_acl_access", 0x7ffc474a4c00, 132) = -1 ENODATA
setxattr("foo/bar", "system.posix_acl_access", "...", 44, 0) = 0
getxattr("foo/bar/baz", "system.posix_acl_access", 0x7ffc474a4b70, 132) = -1 ENODATA
setxattr("foo/bar/baz", "system.posix_acl_access", “...", 44, 0) = 0
getxattr("foo/bar/baz/bibble", "system.posix_acl_access", 0x7ffc474a4ae0, 132) = -1
ENODATA
setxattr("foo/bar/baz/bibble", "system.posix_acl_access", "...", 44, 0) = 0

foo/
bar/

baz/
bibble

foo/
bar/

baz/
bibble

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

Example #2

● In one of the patches for git CVE-2022-24765

● Called from ensure_valid_ownership(const char *path),
also added for CVE-2022-24765.

+#ifndef is_path_owned_by_current_user
+static inline int is_path_owned_by_current_uid(const char *path)
+{
+ struct stat st;
+ if (lstat(path, &st))
+ return 0;
+ return st.st_uid == geteuid();
+}
+
+#define is_path_owned_by_current_user is_path_owned_by_current_uid
+#endif

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

Example #3

● Rust language standard library CVE-2022-21658.
The Rust Security Response WG was notified that the std::fs::remove_dir_all standard
library function is vulnerable to a race condition enabling symlink following (CWE-363).
An attacker could use this security issue to trick a privileged program into deleting files and
directories the attacker couldn't otherwise access or delete.

Overview

Let's suppose an attacker obtained unprivileged access to a system and needed to delete a system directory
called sensitive/, but they didn't have the permissions to do so. If std::fs::remove_dir_all followed symbolic links, they
could find a privileged program that removes a directory they have access to (called temp/), create a symlink
from temp/foo to sensitive/, and wait for the privileged program to delete foo/. The privileged program would follow the
symlink from temp/foo to sensitive/ while recursively deleting, resulting in sensitive/ being deleted.

To prevent such attacks, std::fs::remove_dir_all already includes protection to avoid recursively deleting symlinks, as
described in its documentation:

This function does not follow symbolic links and it will simply remove the symbolic link itself.

Unfortunately that check was implemented incorrectly in the standard library, resulting in a TOCTOU (Time-of-check
Time-of-use) race condition. Instead of telling the system not to follow symlinks, the standard library first checked
whether the thing it was about to delete was a symlink, and otherwise it would proceed to recursively delete the
directory.

This exposed a race condition: an attacker could create a directory and replace it with a symlink between the check and
the actual deletion. While this attack likely won't work the first time it's attempted, in our experimentation we were able
to reliably perform it within a couple of seconds.

https://doc.rust-lang.org/std/fs/fn.remove_dir_all.html

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

How can we fix this mess #1 ?

● Learn from Windows.
– Yes, Windows implemented this RIGHT.

● The Windows NTFS file system has application
followed symlinks, called reparse points.

● Symbolic links on NTFS by default can only be created
by an Administrator (root).

– This fixes the problem perfectly. No code is safe from root anyway.

● Unfortunately this will break many existing applications
(systemd user services for one).

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

How can we fix this mess #2 ?
● New system call (yes ! The Linux way).
● Linux system call openat2() has a flags field:

– RESOLVE_BENEATH

– RESOLVE_IN_ROOT

– RESOLVE_NO_SYMLINKS

● All restrict symlink following in different ways (see the
man page).

– No glibc wrapper (yet).

– Only fixes the problem for open().

– All applications need to be re-written.

– Promising for the future though.

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

How can we fix this mess #3 ?

● Suggested by lwn user “willy”.
● Add a prctl() (process control) option that causes any

system call traversing a symlink to return ELOOP.
● This will break existing applications, but in the “right”

way (i.e. they individually have to ask for it, and then
cope “correctly”).

● No one is currently planning on implementing this.

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

How can we fix this mess #4 ?

● Suggested by lwn user “nix”
● Change symlink semantics such that symlinks owned

by non-root are only followed by a process with a token
containing the uid that created them.

– More subtle protection, but would still break existing applications.

– Probably too confusing for administrators, symlinks “randomly”
breaking.

– Still doesn’t fix the “restricted share” problem when exporting a file
system (may be a Samba / NFS specific problem).

● Again, no one is currently planning on implementing
this.

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

How can we fix this mess #5 ?
● Linux has a little known mount option

MNT_NOSYMFOLLOW.
– This does exactly what we need !

– Allows symlinks to be created and read on a mounted filesystem,
but any attempt to traverse a path containing a symlink returns
ELOOP.

● Breaks applications in the “right” way.
● Allows application vendors to declare – “This

application is only secure if run on a file system
mounted with MNT_NOSYMFOLLOW.

● Doesn’t seem to be available as a “mount” command
option.

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

Conclusion
● Short term (on Linux) MNT_NOSYMFOLLOW is my

preferred choice.
● Keeps existing symlink requirements for normal apps

(systemd, kernel name links etc.)
● Allows specific applications to opt out of symlink

insanity.
– Still allows symlinks to be stored and followed manually if the

application is coded that way.

– Turns symlinks into Windows “shortcuts”.

● Proselytize the “no more symlinks” creed !
● Let’s eliminate symlink race CVEs by 2032 !

O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er

W
o
rld

Questions and Comments ?

Email: jra@samba.org
jra@google.com

Slides available at:

mailto:jra@samba.org
mailto:jra@google.com

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31

