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What are symbolic links ?
● Strange to have to explain this in a file system 

conference, but..
● Most computer users these days have no contact with 

a file system.
– iPhone and Android users have no concept of a file system on their 

device. Each application only handles its own kind of data storage.

● Possibly to enforce data “silos” to keep users tied to 
an application.

– Students no longer know where a file is stored: 
https://www.theverge.com/22684730/students-file-folder-directory-st
ructure-education-gen-z

– Users only search for “objects” by name.

● I have to help my family move “objects” around from 
phone to file server.

https://www.theverge.com/22684730/students-file-folder-directory-structure-education-gen-z
https://www.theverge.com/22684730/students-file-folder-directory-structure-education-gen-z


O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er 

W
o
rld

Step back – What is a file system ?
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A file system visualized.

Path = /home/jeremy/Music/Yo Yo Ma.mp3
/

usr home

bin sbin

useradd

jeremy

vartmp

                             = directory                  = file

ls Documents Music

Yo Yo Ma.mp3
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The original UNIX file system
C API dealing with paths

● open(“/home/jeremy/Music/Yo Yo Ma.mp3”, int flags, mode_t mode)

● unlink(“/path/to/file”)

● mkdir(“/new/directory/name”)

● rmdir(“/directory/name”)

● stat(“Yo Yo Ma.mp3”, struct stat *st) ($cwd is “/home/jeremy/Music”)

● chmod(“/path/to/file”, int mode)

● chown(“/path/to/file”, uid_t owner, gid_t group)

● chdir(“/path/to/new/working/directory”)

● etc..

● Note the “path” may be specified from the root (starts with ‘/’) or relative to 
the current working directory (doesn’t start with ‘/’). 
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Hard links:
ln /usr/bin/ls /tmp/lls

link(“/usr/bin/ls”, “/tmp/lls”)
Path1 = /usr/bin/ls

Path2 = /tmp/lls /

usr home

bin sbin

useradd

jeremy

vartmp

                             = directory                  = file

ls Documents Music

Yo Yo Ma.mp3

lls
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Hard link details

● Hard links create a new directory entry (name) which 
points to the same file data and metadata.

● Hard links cannot be made to directories.
● Hard links simply create a new absolute path to the 

same file.
● Useful to allow a single file to be referenced by many 

names.
– Underlying data is only removed once last link has gone.

● First use of hard links seems to be in the Incompatible 
Timesharing System (ITS) in 1969.
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Symbolic links:
ln -s /usr/sbin /home/foo

symlink(“/home/foo”, “/usr/sbin”)
Path1 = /usr/sbin

Path2 = /home/foo
/

usr home

bin sbin

useradd

jeremy

vartmp

                             = directory                  = file

ls Documents Music

Yo Yo Ma.mp3

foo

bar
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Symbolic link details
● Symbolic links allow the creation of a new object in the 

file system that causes any process accessing it to 
follow it to an arbitrary target somewhere else on the 
file system.

– Not only files, but directories too.

– Loops can be created.

● This should have been a warning sign to file system 
designers that they were doing something wrong.

● First reference to them is from MULTICS in 1965.
– But added to 4.2 BSD Unix.
– “..symbolic links have been added to release 4.2 of Berkeley Unix. This feature 

frees the user from the constraints of the strict hierarchy that a tree structure 
imposes. This flexibility is essential for good name space management.”
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Symbolic links for application 
developers
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Why are symlinks so bad ?

● Symlinks allow paths to change on the fly, creating a 
whole class of time-of-check, time-of-use (TOCTOU) 
race condition security problems.

● Symlinks are not restricted to privileged users, but can 
be created by anyone with write access anywhere in a 
path.

● Symlinks break the beautiful “tree” abstraction of a 
POSIX file system.

● Symlinks break the beautiful simplicity of the POSIX 
file system API.
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The evolution of the API to deal with 
symlinks

● First change was introduction of lstat
– lstat(const char *path, struct stat *st)

– Original “stat()” API silently and transparently follows symlinks.

– Allows calling application to detect if the terminal component of a 
path is a symlink.

– Does not detect symlinks other than the terminal component.

● Ended up in unsafe code such as:
lstat(dangerous_path, &sbuf);

if (!S_ISLNK(sbuf.st_mode)) {

    do_dangerous_operation_on(dangerous_path);

}
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Go Speed Racer Go !

● Race condition exists between:● Race condition exists between:

● If an attacker can rename dangerous_path, and 
replace it with a symlink to somewhere else before 
do_dangerous_operation_on(dangerous_path) is 
called, the dangerous operation is applied to the 
attackers chosen path.

lstat(dangerous_path, &sbuf);
-------race starts here----
if (!S_ISLNK(sbuf.st_mode)) {
    ------race ends here----
    do_dangerous_operation_on(dangerous_path);
}
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Surely these races are too narrow for 
me to care about ?

● https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=symb
olic+link

– There are 1361 CVE Records that match your search.

● This does not just include “old” applications that were 
written before symlink mitigation API’s were added to 
POSIX.

– This includes symlink race condition security holes in the Rust 
language standard library (from 2022).

● The API’s added to mitigate symlink errors are 
impossible for application developers to use safely.

– Similar to the care needed for “atomic” files data and meta-data 
updates, the POSIX API changes are too complex for safe use.

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=symbolic+link
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=symbolic+link
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POSIX Symlink API mitigations
● First was an additional flag, O_NOFOLLOW to the 

open() system call.
– Looks perfect, in practice doesn’t do what applications need.

– O_NOFOLLOW prevents the terminal component in a pathname 
passed to open() being a symlink.

– If completely ignores symlinks in non-terminal components.

● Example of an exploit:
– (Application running as root – checks /data/mydir is safe)

Attacker renames “/data/mydir” → “/data/out-of-the-way”

symlink(“/data/mydir”, “/etc”);

int fd = open(“/data/mydir/passwd”, O_WRONLY|O_NOFOLLOW..);

ret = write(fd, data, size);

– Application now writes into /etc/passwd
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More POSIX API mitigations
● To solve the previous O_NOFOLLOW problem 

applications have to chdir() into the parent directory. 
Check it hasn’t been symlink raced and then use 
O_NOFOLLOW, then chdir back.

– Samba does this.

● open() → openat(int dirfd, const char *path, int flags, 
mode_t mode)

– This actually works. The ‘dirfd’ parameter here is a handle of a 
containing (parent) directory.

– So long as “path” has no “/” characters and flags contains 
O_NOFOLLOW, then this cannot be raced.

● Of course, getting the handle on the parent directory 
also has to be protected against symlink races.
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XXXXat’s for everyone !
● Based on openat(), ALL path-based operations must 

have an XXXXat() variant to avoid symlink races in the 
same way.

● Oh look, lots of new system calls.

● The original clean and simple POSIX filesystem API 
doesn’t look so clean and simple anymore.

– And on Linux, one of these calls doesn’t work – fchmodat() will still 
always follow symlinks in the target path.

openat(), mkdirat(), unlinkat(), linkat(), renameat(), 
symlinkat(), fstatat(), fchmodat(), fchownat(), futimesat(), 
mknodat(), faccessat(), readlinkat(), utimensat(), scandirat(), 
execveat()
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Pathnames are now broken.
● Any application that allows more than one component 

in a path without splitting the last component off and 
using the XXXXat() functions can be symlink raced.

● Still not enough for a feature complete application.
– Extended attribute calls are missing, no getxattrat(), setxattrat() etc.

– For extended attribute pathname operations the 
chdir()/realpath()/getxattr()/chdir() dance must still be done.

● I know, let’s add more open() flags !
– Linux added O_PATH.

– Allows a handle to be taken on a file or directory, usually meant to 
be passed as the file descriptor argument to the XXXXat() functions.

– O_PATH handles cannot be used to read/write data. 
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Extended attributes revisited
● Having an O_PATH handle would be a great solution 

for getting/setting extended attributes where you don’t 
want to open the file for modification.

– Unfortunately O_PATH prohibits reading or writing extended 
attributes.

● “Hack” solution, invented by a Red Hat engineer.
– int fd = openat(dirfd, “file”, O_PATH|O_NOFOLLOW);

sprintf(buf, “/proc/self/fd/%d”, fd);

getxattr(buf, ea_name, value, size);

● Depends on Linux-only semantics of /proc file system.
– Insanity, pure insanity.
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Symlinks turn this:
Into this
(“Primer” timeline credit xkcd):
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I assert that pathnames are now 
unusable for “mortal” application 

developers on POSIX
● I claim that for a non-trivial application, it is impossible 

for application developers to avoid symlink races.
● It’s not just their own code – all library code they call 

that uses path names must be aware of multi-path-
component symlink races.

● Spoiler alert – even security library code is not symlink 
race aware.



O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er 

W
o
rld

Example #1

● Given a directory hierarchy:

● $ strace setfacl -R -m u:gdm:r foo

foo/
bar/

baz/
bibble

setxattr("foo", "system.posix_acl_access", "...", 44, 0) = 0
getxattr("foo/bar", "system.posix_acl_access", 0x7ffc474a4c00, 132) = -1 ENODATA
setxattr("foo/bar", "system.posix_acl_access", "...", 44, 0) = 0
getxattr("foo/bar/baz", "system.posix_acl_access", 0x7ffc474a4b70, 132) = -1 ENODATA
setxattr("foo/bar/baz", "system.posix_acl_access", “...", 44, 0) = 0
getxattr("foo/bar/baz/bibble", "system.posix_acl_access", 0x7ffc474a4ae0, 132) = -1 
ENODATA
setxattr("foo/bar/baz/bibble", "system.posix_acl_access", "...", 44, 0) = 0

foo/
bar/

baz/
bibble

foo/
bar/

baz/
bibble
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Example #2

● In one of the patches for git CVE-2022-24765

● Called from ensure_valid_ownership(const char *path), 
also added for CVE-2022-24765.

+#ifndef is_path_owned_by_current_user
+static inline int is_path_owned_by_current_uid(const char *path)
+{
+       struct stat st;
+       if (lstat(path, &st))
+               return 0;
+       return st.st_uid == geteuid();
+}
+
+#define is_path_owned_by_current_user is_path_owned_by_current_uid
+#endif
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Example #3

● Rust language standard library CVE-2022-21658.
The Rust Security Response WG was notified that the std::fs::remove_dir_all standard 
library function is vulnerable to a race condition enabling symlink following (CWE-363). 
An attacker could use this security issue to trick a privileged program into deleting files and 
directories the attacker couldn't otherwise access or delete.

Overview

Let's suppose an attacker obtained unprivileged access to a system and needed to delete a system directory 
called sensitive/, but they didn't have the permissions to do so. If std::fs::remove_dir_all followed symbolic links, they 
could find a privileged program that removes a directory they have access to (called temp/), create a symlink 
from temp/foo to sensitive/, and wait for the privileged program to delete foo/. The privileged program would follow the 
symlink from temp/foo to sensitive/ while recursively deleting, resulting in sensitive/ being deleted.

To prevent such attacks, std::fs::remove_dir_all already includes protection to avoid recursively deleting symlinks, as 
described in its documentation:

This function does not follow symbolic links and it will simply remove the symbolic link itself.

Unfortunately that check was implemented incorrectly in the standard library, resulting in a TOCTOU (Time-of-check 
Time-of-use) race condition. Instead of telling the system not to follow symlinks, the standard library first checked 
whether the thing it was about to delete was a symlink, and otherwise it would proceed to recursively delete the 
directory.

This exposed a race condition: an attacker could create a directory and replace it with a symlink between the check and 
the actual deletion. While this attack likely won't work the first time it's attempted, in our experimentation we were able 
to reliably perform it within a couple of seconds.

https://doc.rust-lang.org/std/fs/fn.remove_dir_all.html
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How can we fix this mess #1 ?

● Learn from Windows.
– Yes, Windows implemented this RIGHT.

● The Windows NTFS file system has application 
followed symlinks, called reparse points.

● Symbolic links on NTFS by default can only be created 
by an Administrator (root).

– This fixes the problem perfectly. No code is safe from root anyway.

● Unfortunately this will break many existing applications 
(systemd user services for one).



O
p
en

in
g

 W
in

d
o
w

s
 to

 a
 W

id
er 

W
o
rld

How can we fix this mess #2 ?
● New system call (yes ! The Linux way).
● Linux system call openat2() has a flags field:

– RESOLVE_BENEATH

– RESOLVE_IN_ROOT

– RESOLVE_NO_SYMLINKS

● All restrict symlink following in different ways (see the 
man page).

– No glibc wrapper (yet).

– Only fixes the problem for open().

– All applications need to be re-written.

– Promising for the future though.
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How can we fix this mess #3 ?

● Suggested by lwn user “willy”.
● Add a prctl() (process control) option that causes any 

system call traversing a symlink to return ELOOP.
● This will break existing applications, but in the “right” 

way (i.e. they individually have to ask for it, and then 
cope “correctly”).

● No one is currently planning on implementing this.
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How can we fix this mess #4 ?

● Suggested by lwn user “nix”
● Change symlink semantics such that symlinks owned 

by non-root are only followed by a process with a token 
containing the uid that created them.

– More subtle protection, but would still break existing applications.

– Probably too confusing for administrators, symlinks “randomly” 
breaking.

– Still doesn’t fix the “restricted share” problem when exporting a file 
system (may be a Samba / NFS specific problem).

● Again, no one is currently planning on implementing 
this.
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How can we fix this mess #5 ?
● Linux has a little known mount option 

MNT_NOSYMFOLLOW.
– This does exactly what we need !

– Allows symlinks to be created and read on a mounted filesystem, 
but any attempt to traverse a path containing a symlink returns 
ELOOP.

● Breaks applications in the “right” way.
● Allows application vendors to declare – “This 

application is only secure if run on a file system 
mounted with MNT_NOSYMFOLLOW.

● Doesn’t seem to be available as a “mount” command 
option.
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Conclusion
● Short term (on Linux) MNT_NOSYMFOLLOW is my 

preferred choice.
● Keeps existing symlink requirements for normal apps 

(systemd, kernel name links etc.)
● Allows specific applications to opt out of symlink 

insanity.
– Still allows symlinks to be stored and followed manually if the 

application is coded that way.

– Turns symlinks into Windows “shortcuts”.

● Proselytize the “no more symlinks” creed !
● Let’s eliminate symlink race CVEs by 2032 !
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Questions and Comments ?

Email: jra@samba.org
jra@google.com

Slides available at:

mailto:jra@samba.org
mailto:jra@google.com
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