What does the KCC do?
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The Knowledge Consistency Checker creates a
replication graph linking Domain Controllers.

- barely changed since Windows 2000.

- we have samba_kcc since Samba 4.3 (2015).
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Minimal connected graph
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Minimal connected graph

with shortcuts
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double linked graph
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two sites
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KCC does this
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intersite graph is a tree










Site Links

Nantes can only
see Inverness




Inverness can see
Nantes and Suva




Suva, Wellington, and Lima
have free reign to form a tree



Site links can have a cost

/
/ ~
( Ss o
|\ P - N \\ N
| N N
\ NN
\ I\
cost: 100y | |T~a.T—— - , cost: 500
\ \

\ “| exist but pretend | don’t”



Intra-site links

double-linked ring in GUID order
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With more DCs, add random cross-links
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Aiming for a probable
maximum of 3 hops
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Intersite is based on Dijkstra’s Algorithm and Kruskal's Algorithm

Intrasite is the double ring + increasing random links

Some DCs are nominated as intersite bridgeheads G

Suva DC2

Suva DC1

Wellington DC1

Some DCs are InterSite Topology Generators (ISTGs)



Samba’s KCC

The old KCC made fully connected graphs
written in C

samba_kcc is written in Python,
run as a subprocess

started in 2011 by Dave Craft
“finished” in 2015 by Garming Sam and me.

follows [MS-ADTS] 6.2.*



KCC mechanics

The KCC thinks in NTDSConnections,
produces Repslo and RepsFrom links

Each DC:

- periodically pulls from DCs in its RepsFrom list
- asks its Repslo partners to pull when necessary

only the RepslTo and RepsFrom really matter.



KCC mismatch

In a mixed domain, if Samba and Windows
have different intersite trees,
the network could split.




Samba KCC problems

KCCis

- complex and poorly specified, showing its age

- practically untestable without a large network
and iterated runs

samba_kcc
developed in disconected spurts
by novices
over many versions of Python
using buggy Python bindings



working around
2011 Python bugs

def

# WARNING:

#
=

o W e W W e e W W W W W W

#

There is a very subtle bug here with python

and our NDR code. If you assign directly to

a NDR produced struct (e.g. t repsFrom.ctr.other info)
then a proper python GC reference count is not
maintained.

To work around this we maintain an internal
reference to "dns name(x)" and "other info" elements
of repsFromToBlob. This internal reference

is hidden within this class but it is why you

see statements like this below:

self. dict ['ndr blob'].ctr.other info = \
self. dict ['other info'] = drsblobs.repsFromTolOtherInfo()

That would appear to be a redundant assignment but
it is necessary to hold a proper python GC reference
count.

if ndr blob is None:

self. dict ['ndr blob'] = drsblobs.repsFromToBlob()
self. dict ['ndr blob'].version = Ox1

self. dict ['dns namel'] = None

self. dict ['dns name2'] = None

self. dict ['ndr blob'].ctr.other info =\
self. dict ['other info'] = drsblobs.repsFromTolOtherInfo()

else:

self. dict ['ndr blob'] = ndr _blob
self. dict ['other info'] = ndr blob.ctr.other info

if ndr blob.version == Ox1:
self. dict ['dns namel']
self. dict ['dns name2']
else:
self. dict ['dns namel']
self. dict ['dns name2']

ndr blob.ctr.other info.dns name
None

ndr blob.ctr.other info.dns namel
ndr blob.ctr.other info.dns name2

str (self):



Things samba_kcc does not do

- correctly check the liveness of links
- handle SMTP transport

Things samba_kcc does do that are absolutely pointless

- calculate replication schedules that are unused
- calculate all kinds of unused flags

NTDSCONN_OPT TWOWAY SYNC

DRSUAPI DRS DISABLE AUTO SYNC

DRSUAPI DRS DISABLE PERIODIC SYNC

NTDSCONN OPT DISABLE INTERSITE COMPRESSION
DRSUAPI DRS USE COMPRESSION

NTDSSETTINGS OPT IS TOPL DETECT STALE DISABLED
NTDSCONN OPT OVERRIDE NOTIFY DEFAULT

NTDSSITELINK_OPT_TWOWAY_SYNC
DS NTDSSFTTTINGS OPT TS RAND RH SFIFCTTON DTSARI ED




Unexpected things samba_kcc does

- lots of multi-coloured debug messages, not controlled by -d

- lots of self-testing (graph verification)

- writes .dot graph files (like samba-tool visualize reps --dot)
- loads fake domains via LDIF for testing

- leaves extra repslo and repsFroms lying around



samba kcc
- could be 50% smaller with no loss
- or 90% smaller and work better

it could carefully diverge from Windows topology, in interoperable ways
(we know accidental divergence works OK).
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