What does the KCC do?

Douglas Bagnall

douglas.bagnhall@catalyst.net.nz dbagnall@samba.org

The Knowledge Consistency Checker creates a
replication graph linking Domain Controllers.

- barely changed since Windows 2000.

- we have samba_kcc since Samba 4.3 (2015).

DC1

DC2

DC2

|

‘ DC3

DC1

)

DC3

DC4

DC2

DC1

DC4

pie
> s 17

DC1

DC2

/ / \ V/V/
N/

DC6

DC2

N~ Ll
O 27T ITIN\SNS 3] &
s \
L/ A\
L n
L /\ IS
X X A XK X X
I~ 2N |
NS L1
N /]
N >
O SN\ /777 O
= V¥ =

DC4

DC8

DC9

\ 1\

DC2

[[/

/ X\ X K

AN X /NN

NN ANA Y

NVAD.O:N

/]]

DC6

DC5

\ 1\

DC4

DC10

DC3

DC15

DC16

DC2

DC14

9 L
U U
o0 . o
U] = AN O
> ()
[< o
< < N
/ z s S \
™~ -l VM/ WM K m
U A N] A ANNTNLR N U
% W S
TN KAVAVSZ,\ * VAVK IS BN BVAN
X
XX XX X XK [XK X] XX XXX
X
YISO IR IO
£ ¢ S
o S X %
U NUSLY)% N Y SAA 171]
a N % i)
N X % d
N 2 /]
s 2
- a y
O) \ U
2 § 2
i U
= A

DC1

DC4

DC6

DC1

DC76

DC14

DC

DCA3

DC

DC

27

28

D(C29

XX

C1

DC30

c3

c2

DC

DC

34

35

C37

|

-’éﬁ'o.

‘e
|

"NW.

A AVIA

ANV
\/ s

v,
LY, .
AV & VAN
LA 4

oA

t
D
0%

A Wy,

N
W

I,

.'.

!
N

s

i
il
: .//(////“

A
i
1

N

[A0

‘-
%
PO

v

Y . N
_n"'.’.'AQ P
e

Minimal connected graph

DC4

DC3

DC2

N

DC5

T DC1

Minimal connected graph

with shortcuts

DC3

DC5

double linked graph

DC4

\

DC3

.

DC5

N\

DC2

4

J

DC1

two sites

Suva DC1

v

Wellington DC2

Suva DC2

Suva DC3

/

Wellington DC1

;!
A 4

Wellington DC2

Wellington DC1

Suva DC2

Suva DC1

Suva DC3

KCC does this

Wellington DC2

Suva DC2

Suva DC1

Wellington DC1

Suva DC3

intersite graph is a tree

Site Links

Nantes can only
see Inverness

Inverness can see
Nantes and Suva

Suva, Wellington, and Lima
have free reign to form a tree

Site links can have a cost

/
/ ~
(Ss o
|\ P - N \\ N
| N N
\ NN
\ I\
cost: 100y | |T~a.T—— - , cost: 500
\ \

\ “| exist but pretend | don’t”

Intra-site links

double-linked ring in GUID order

Suva DC2

Suva DC3

Suva DC1

Lima DC2

Wellington DC1

Suva DC2

Suva DC1

\

Suva DC5

Suva DC4

Suva DC3

Lima DC2

Wellington DC1

With more DCs, add random cross-links

Suva DC1

//

Suva DC7

'

Suva DC6

N,

Suva DC5

Q

Suva DC2

\\ Lima DC2
Suva DC3
Wellington DC1

Suva DC4
/
/

Aiming for a probable
maximum of 3 hops

Suva DC9

Suva DC1 O

7

Suva DC1

/

Suva DC8

\

Suva DC7

A

AN

Suva DC6

AN

Suva DC2

| -

Suva DC3

Suva DC4

Wellington DC1

Intersite is based on Dijkstra’s Algorithm and Kruskal's Algorithm

Intrasite is the double ring + increasing random links

Some DCs are nominated as intersite bridgeheads G

Suva DC2

Suva DC1

Wellington DC1

Some DCs are InterSite Topology Generators (ISTGs)

Samba’s KCC

The old KCC made fully connected graphs
written in C

samba_kcc is written in Python,
run as a subprocess

started in 2011 by Dave Craft
“finished” in 2015 by Garming Sam and me.

follows [MS-ADTS] 6.2.*

KCC mechanics

The KCC thinks in NTDSConnections,
produces Repslo and RepsFrom links

Each DC:

- periodically pulls from DCs in its RepsFrom list
- asks its Repslo partners to pull when necessary

only the RepslTo and RepsFrom really matter.

KCC mismatch

In a mixed domain, if Samba and Windows
have different intersite trees,
the network could split.

Samba KCC problems

KCCis

- complex and poorly specified, showing its age

- practically untestable without a large network
and iterated runs

samba_kcc
developed in disconected spurts
by novices
over many versions of Python
using buggy Python bindings

working around
2011 Python bugs

def

WARNING:

#
=

o W e W W e e W W W W W W

#

There is a very subtle bug here with python

and our NDR code. If you assign directly to

a NDR produced struct (e.g. t repsFrom.ctr.other info)
then a proper python GC reference count is not
maintained.

To work around this we maintain an internal
reference to "dns name(x)" and "other info" elements
of repsFromToBlob. This internal reference

is hidden within this class but it is why you

see statements like this below:

self. dict ['ndr blob'].ctr.other info = \
self. dict ['other info'] = drsblobs.repsFromTolOtherInfo()

That would appear to be a redundant assignment but
it is necessary to hold a proper python GC reference
count.

if ndr blob is None:

self. dict ['ndr blob'] = drsblobs.repsFromToBlob()
self. dict ['ndr blob'].version = Ox1

self. dict ['dns namel'] = None

self. dict ['dns name2'] = None

self. dict ['ndr blob'].ctr.other info =\
self. dict ['other info'] = drsblobs.repsFromTolOtherInfo()

else:

self. dict ['ndr blob'] = ndr _blob
self. dict ['other info'] = ndr blob.ctr.other info

if ndr blob.version == Ox1:
self. dict ['dns namel']
self. dict ['dns name2']
else:
self. dict ['dns namel']
self. dict ['dns name2']

ndr blob.ctr.other info.dns name
None

ndr blob.ctr.other info.dns namel
ndr blob.ctr.other info.dns name2

str (self):

Things samba_kcc does not do

- correctly check the liveness of links
- handle SMTP transport

Things samba_kcc does do that are absolutely pointless

- calculate replication schedules that are unused
- calculate all kinds of unused flags

NTDSCONN_OPT TWOWAY SYNC

DRSUAPI DRS DISABLE AUTO SYNC

DRSUAPI DRS DISABLE PERIODIC SYNC

NTDSCONN OPT DISABLE INTERSITE COMPRESSION
DRSUAPI DRS USE COMPRESSION

NTDSSETTINGS OPT IS TOPL DETECT STALE DISABLED
NTDSCONN OPT OVERRIDE NOTIFY DEFAULT

NTDSSITELINK_OPT_TWOWAY_SYNC
DS NTDSSFTTTINGS OPT TS RAND RH SFIFCTTON DTSARI ED

Unexpected things samba_kcc does

- lots of multi-coloured debug messages, not controlled by -d

- lots of self-testing (graph verification)

- writes .dot graph files (like samba-tool visualize reps --dot)
- loads fake domains via LDIF for testing

- leaves extra repslo and repsFroms lying around

samba kcc
- could be 50% smaller with no loss
- or 90% smaller and work better

it could carefully diverge from Windows topology, in interoperable ways
(we know accidental divergence works OK).

Wellington DC2 Nantes DC1 Suva DC4 Suva DC5 Suva DC6 Lima DC2 Perth DC2 Colombo DC1 Accra DC2 Lagos DC1 Hanoi DC1

oz o o i I !

Wellington DC1 Nantes DC2 Lima DC1 Perth DC1 Colombo DC2 Accra DC1 Lagos DC2 Hanoi DC2

L

Suva DC1

Goéttingen DC1 -— |

4

Gottingen DC2

Suva DC7 Jordan DC2
Suva DC3 Jordan DC1
X
Suva DC2 Ankara DC1
Ankara DC2
Port-Vila DC1
Port-Vila DC2
\
Inverness DC1
!
Skye DC1 Inverness DC2
K
Skye DC2 Niue DC1
[]
Scary NTDSConnection graph

Va

Nurnberg DC2

i

Nurnberg DC1

Wellington DC2

4

Wellington DC1

I

Suva DC1

Gottingen DC1

Gottingen DC2

([
— More reassuring repsFrom graph
Suva DC7 Nantes DC1 Jordan DC2
i
Suva DC6 Nantes DC2 Jordan DC1
o
Suva DC5 Ankara DC1
i
| Suva DC2 Suva DC4 Ankara DC2
Suja DC3 Port Vila DC1
Lima DC1 Accra DC1 Port Vila DC2
AN
Lima DC2 Lagos DC1 Accra DC2 Inverness DC1 Colombo DC1
i gt}
Lagos DC2 Skye DC1 Inverness DC2 Colombo DC2 Hanoi DC2 Perth DC2
AR g4
Skye DC2 Niue DC1 Hanoi DC1 Perth DC1

Niue DC2

v

Nurnberg DC3

v

Nirnberg DC2

Nurnberg DC1

<

Wellington DC2

4

Wellington DC1

I

Suva DC1

Gottingen DC1

Suva DC7
Suva DC6
o
Suva DC5
i
| Suva DC2 Suva DC4
Suja DC3
Lima DC1 Accra DC1
g N
Lima DC2 Lagos DC1 Accra DC2
i
Lagos DC2

Gottingen DC2

Nantes DC1

i

Nantes DC2

Jordan DC2

Skye DC1

|

Jordan DC1

Ankara DC2

Inverness DC1

=

Ankara DC1

Port Vila DC1

Inverness DC2

l

Skye DC2

Niue DC1

Niue DC2

v

Nurnberg DC3 [«

Port Vila DC2
Colombo DC1
Colombo DC2 Hanoi DC2 Perth DC2
g4
Hanoi DC1 Perth DC1

v

Nirnberg DC2

Nurnberg DC1

Questions?

